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Abstract: -
Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV
type equations using direct methods devised for this purpose. It is found that the equations, having
multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of multi-soliton
solutions which include localized static structures that behave like (static) solitons when they collide
with moving solitons. The alternative sets of solutions include the steady-state solution describing
the static soliton itself and unsteady solutions describing mutual interactions in a system consisting
of a static soliton and several moving solitons. As distinct from common multisoliton solutions those
solutions represent combinations of algebraic and hyperbolic functions and cannot be obtained using the
traditional methods of soliton theory.
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1 Introduction

The Korteweg-de Vries (KdV) equation arises in
many physical contexts as the leading order equa-
tion governing weakly nonlinear long waves when
nonlinearity and dispersion are in balance. To
address the higher effects the asymptotic expan-
sion can be extended to the next order in the
wave amplitude yielding higher order KdV equa-
tions. Some equations of this class proved to be
completely integrable and, consequently, possess-
ing all the remarkable properties characteristic of
such equations [1, 2]. Chief among these proper-
ties is the existence of multi-soliton solutions de-
scribing the ”elastic” collisions of solitary waves.
Some of higher order KdV equations, although
not proven integrable, possess multi-soliton solu-
tions too.

In the present paper, some unknown effects
in soliton dynamics governed by the higher order
KdV-type equations are inferred from new exact
explicit solutions of the equations. The solutions
have been obtained using direct methods devel-
oped in [3, 4]. It is found that some higher order
KdV equations, having multi-soliton solutions in
terms of the KdV-type solitons, possess also an
alternative set of multi-soliton solutions which in-
clude localized static structures that behave like
solitons when they collide with moving solitons.
Both the moving soliton and and the static pat-
tern retain their original shapes, with the only
effect of collision on the static pattern being a
phase (position) shift. This implies that these
steady state patterns may be termed static soli-
tons. The alternative sets of solutions include the

steady-state solution describing the static soli-
ton itself and unsteady solutions describing mu-
tual interactions in a system consisting of a static
soliton and several moving solitons. As distinct
from common multisoliton solutions those solu-
tions represent combinations of algebraic and hy-
perbolic functions. The alternative multi-soliton
solutions including static solitons can be algorith-
mically derived using the methods of [3, 4]. It
also seems that, in some cases, such (static soli-
ton + multi-soliton) solutions can be constructed
from the common multi-soliton solutions using
some rules as an example of the Sawada-Kotera
equation [5] shows. The (static soliton + multi-
soliton) solutions cannot be obtained using the
traditional methods of soliton theory.

2 Methods

2.1 Direct method using a ”potential”
variable

The method represents an enhanced version of
the method developed in [3].

The solution u(x, t) of an evolution equation
is sought as a function of new variables with one
of them being the ’potential’ p, as follows

u(x, t) = G (p (x, t) , ξ (x, t)) ;

p(x, t) =

∫
u(x, t)dx (1)

where the second argument, in general, can be
chosen arbitrarily. Note that the choice of the
limits of integration in the definition of p in (1)
is of no importance as it does not influence the
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solution for u = px. The use of the potential p
as one of the independent variables is essential
if the procedure is aimed at defining the solitary
wave solutions. For such solutions, u vanishes for
(at least) two values of the ’potential’ p and so
the corresponding choice of the function G(p, ξ)
(’Ansatz’) provides obtaining solitary wave solu-
tions in the original variables.

The first step of the procedure is determin-
ing arbitrary functions of ξ contained in the
form of G(p, ξ). To implement this step, the
transformation of independent variables (x, t) →
(p(x, t), ξ(x, t)) is made in the equation and then
the chosen form of u = G(p, ξ)) is substituted
into the transformed equation. This results in the
relation, usually having the form of a polynomial
with coefficients dependent on the unknown func-
tions of ξ and their derivatives, and the require-
ment of vanishing the coefficients of the polyno-
mial yields an overdetermined system of ordinary
differential equations for the unknown functions.
Having solutions of that system defined one can
implement the next step which is solving the first
order PDE for p(x, t)

px = G (p, ξ (x, t)) (2)

To specify the arbitrary function F (t) contained
in the solution of (2) the solution is substituted
into the integrated form of the original equa-
tion which results in an ODE for F (t). Solving
this ODE specifies the expression for p(x, t) com-
pletely so that the solution u(x, t) of the original
equation can be calculated as u = px.

The form of the Ansatz (1) for obtaining so-
lutions including static solitons can be inferred
from a one-soliton solution of an equation un-
der consideration. Such a solution is represented
as a function u(ξ) of a travelling wave argument
ξ = k(x−V t). Eliminating ξ from expressions for
u(ξ) and p(ξ) yields the Ansatz u = G1(p). To
include a static soliton the constant coefficients
in (4) are replaced by functions of x, as follows

G(p, x) = a(x)p2 + b(x)p+ c(x) (3)

In particular, for the KdV-like sech2 solitons,
G1(p) is a quadratic function

G1(p) = ap2 + bp+ c (4)

where a, b and c are constants. Replacing the
constant coefficients in (4) by functions of x yields
the Ansatz

G(p, x) = a(x)p2 + b(x)p+ c(x) (5)

2.2 Modified Hirota’s direct method

The procedure starts from the Hirota transforma-
tion

u(x, t) = M
∂2 ln f(x, t)

∂x2
(6)

where M is a constant to be determined in the
course of calculations. Next, a solution of type

f(x, t) = f (0)(x) +
n=∞∑
n=1

ϵnf (n)(x, t) (7)

is sought where ϵ serves as a book-keeping pa-
rameter (not a small quantity). Substituting (6)
and (7) into the evolution equation and equat-
ing to zero the terms with different powers of ϵ
yields a system of equations for f (0), f (1) and so
on. Although, in general, the system includes an
infinite number of equations it can be terminated
at some order m if the equations in the higher or-
ders n > m do not contain inputs from the lower
orders.

A modification of the traditional Hirota rep-
resentation for f(x, t) concerns the forms of the
functions f (0), f (1) and so on. First of all, as it is
already indicated in (7), f (0) is a function of x in-
stead of a constant (unity) of the traditional rep-
resentation which implies seeking a steady-state
pattern as the lowest order solution. In the next
orders, the constant coefficients of the exponents
with the travelling wave argument are also re-
placed by functions of x.

3 Alternative set of solutions of
the Sawada–Kotera equation

Consider first the integrable Sawada–Kotera (SK)
equation [5, 6]

ut + u5x + βuu3x + βuxu2x +
β2

5
u2ux = 0 (8)

which, being one of the simplest integrable scalar
evolution equations of order higher than 3, is
among the equations of major mathematical and
physical importance. The solitary wave solution
of the SK equation has the form

u =
30k2

β
sech2(kx− 16k5t− ϕ) (9)

Besides the KdV-like sech2 solitons (9) the SK
equation (8) admits steady-state solutions of the
form [4]

u =

(
60k2

β

)
a− k2(x+ b)2

(a+ k2(x+ b)2)2
(10)
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Figure 1: Solution (11) of the SK equation (8):
β = 15, k = 0.5, ϕ = −5.

where a, b and k are constants. Of course their
property of being localized is not sufficient for
naming those patterns as ’solitons’ but it appears
that they really behave as (static) solitons when
they collide with regular (moving) solitons – their
shape remains unchanged after the collision, only
a phase (position) shift is observed.

A solution of equation (8) describing collision
of a static soliton with a regular (moving) sech2

soliton is obtained using the method described in
Section 2.1 in the form

u =

(
30k2

β

)(
−3 + k2x2 + k4x4sech2η

+6kx tanh η − 3k2x2tanh2η
)/

(
3 + k2x2 − 3kx tanh η

)2
,

η = kx− 16k5t− ϕ (11)

The solution is shown in Fig. 1.
Solutions describing mutual interactions in a

system of a static soliton and several moving
solitons can be algorithmically derived using Hi-
rota’s method with a modified solution form de-
scribed in Section 2.2. Thus, it seems that, for the
SK equation, static solitons fit naturally into the
KdV type multisoliton dynamics and, in parallel
with the common N -soliton solutions, there ex-
ist the (static soliton + N -soliton) solutions. An
additional support for this view is provided by
that, for the SK equation, there exists a simple
rule which allows direct construction of the (static
soliton + N -soliton) solutions from the common
N -soliton solutions. According to this rule, the
solution including a static soliton is obtained from
a common N -soliton solution represented via Hi-
rota’s transformation by supplying each exponent
in the function f(x, t) with a corresponding mul-

tiplier dependent on x, as follows

eθi1+θi2+···+θim ⇒(
1 + c2

(
x− 3

(
1

ki1
+

1

ki2
+ · · ·+ 1

kim

))2
)

×eθi1+θi2+···+θim (12)

where c2 is an armitrary constant and 0 ≤ m ≤ N
with m = 0 corresponding to a constant term
(unity). This rule is found to be valid for one-
, two-, and three-soliton solutions which makes
it plausible that it holds for N -soliton solutions
with any N , and that mutual interactions in such
a system including a static soliton are elastic, as
they are in the one-, two-, and three-soliton cases.

4 Concluding remarks

The alternative sets of solutions including static
solitons have been identified for some higher or-
der KdV-type equations. Solutions, which de-
scribe mutual interactions in a system consist-
ing of a static soliton and several moving soli-
tons can be algorithmically derived using the
Hirota method with a modified representation
form. Moreover,for the SK equation, the sim-
ple rule (11) which allows direct construction
of the (static soliton + multi-soliton) solutions
from the common multi-soliton solutions can be
found. So it seems that static solitons fit nat-
urally into the KdV-type multi-soliton dynam-
ics. One more example of the KdV type sys-
tem, in which there exists the static soliton phe-
nomenon, is provided by the KdV-KK equation,
which is a combination of the KdV equation with
the Kaup-Kupershmidt (KK) equation [7], [8] dif-
ferential polynomial. The KdV-KK equation at-
tracted attention only recently when it was dis-
covered [3] that it admitted multi-soliton solu-
tions in terms of the so-called Generalized Kaup-
Kupershmidt (GKK) solitary waves possessing
some features not found among other KdV type
equations. Multi-soliton solutions of the KdV-
KK equation expressed in terms of the GKK soli-
tons can be defined algorithmically [3] using the
Hirota method. The KdV-KK equation also ad-
mits steady-state solutions similar to (10). Solu-
tion of the KdV-KK equation describing interac-
tion of moving GKK solitons with a static soliton
can be obtained using the methods described in
Section 2.

References
[1] P. G. Drazin and R. S. Johnson, Solitons: An

Introduction, Cambridge University Press,

WSEAS TRANSACTIONS on ELECTRONICS Georgy I. Burde

E-ISSN: 2415-1513 46 Volume 7, 2016



Cambridge, 1990

[2] M. J. Ablowitz and P. A. Clarkson, Soli-
tons, Nonlinear Evolution Equations and
Inverse Scattering, Cambridge University
Press, Cambridge, England, 1991

[3] G. I. Burde, J. Phys. A: Math. Theor., Vol.
43, 2010, 085208

[4] G. I. Burde, Phys. Rev. E, Vol. 84, 2011,
026615

[5] K. Sawada and T. Kotera, Prog. Theor.
Phys., Vol. 51, 1974, 1355

[6] P. I. Caudrey, E. K. Dodd, and J. D. Gibbon,
Proc. Roy. Soc. Lond. A, Vol. 351, 1976, 407

[7] D. Kaup, Stud. Appl. Math., Vol. 62, 1980,
189

[8] B. A. Kupershmidt, Phys. Lett. A, Vol. 202,
1984, 213

WSEAS TRANSACTIONS on ELECTRONICS Georgy I. Burde

E-ISSN: 2415-1513 47 Volume 7, 2016




